Table 3. Mean Sn—Cl bond distances (Å) in hexacoordinated chlorostannate(IV) compounds

Compound	All Sn-Cl bonds	cis Sn—Cl bonds	trans Sn-Cl bonds	Reference
[(CH ₃) ₄ N _b SnCl ₆	2.424 (3)		_	(a)
[C ₃ H ₃ NH] ₂ SnCl ₆	2.431 (1)	_	—	(b)
[4-ClC ₃ H ₄ NH] ₂ SnCl ₆	2.432 (4)	_		(c)
[(CH ₃) ₄ N ₂ (C ₂ H ₅)SnCl ₅	2.495 (4)	2.516 (3)	2.410 (4)	(d)
[C ₅ H ₅ NH] ₂ (C ₂ H ₅)SnCl ₅	2.495 (2)	2.519 (1)	2.400 (2)	(d)
[CH ₃ NH ₃] ₂ (C ₂ H ₅)SnCl ₅	2.502 (1)	2.522 (1)	2.426 (1)	(d)
4-CH ₃ C ₅ H ₄ NH ₂ (C ₂ H ₅)SnCl ₅	2.500 (1)	2.526 (1)	2.397 (1)	(d)
[4-CH ₃ C ₅ H ₄ NH] ₂ (C ₆ H ₅)SnCl ₅	2.488 (1)	2.492 (1)	2.473 (1)	(e)

References: (a) Nielsen & Berg (1980); (b) Borchers & Weiss (1987); (c) Gearhart, Brill, Welsh & Wood (1973); (d) Storck & Weiss (1989); (e) this work.

are weakened through the influence of the $C_2H_5^$ group, while the trans Sn-Cl bonds are slightly shorter than in $SnCl_6^2$ compounds ('transstrengthening and 'cis-weakening'). Within the $(C_{6}H_{5})SnCl_{5}^{2-}$ anion of $(4-CH_{3}C_{5}H_{4}NH)_{2}[(C_{6}H_{5})-$ SnCl₅], cis and trans bonds are weakened. This may be a result of hydrogen bonding. In none of the four $(C_2H_5)SnCl_5^{2-}$ compounds of Table 3 were short N...Cl_{trans} distances observed (only the Cl atoms, cis to the ethyl group, are hydrogen bonded), while in $(4-CH_3C_5H_4NH)_2[(C_6H_5)SnCl_5]$, the trans Cl atom has N…Cl distances of 3.295 and 3.598 Å. This can be compared with Cl(5), where N…Cl(5) distances of 3.216 and 3.355 Å are accompanied by a lengthening of 0.078 Å over the mean cis Sn-Cl bond length. Therefore, hydrogen bonds may lengthen the trans Sn—Cl bond by up to 0.06 Å – enough to compensate for the *trans* influence of the $C_6H_5^-$ group.

The ³⁵Cl NQR signals observed for $(4-CH_3C_5H_4-NH)_2[(C_6H_5)SnCl_5]$ are weak. Only two of the expected five signals showed a sufficient intensity to be recognized unambiguously as NQR resonances.

The 35 Cl NQR frequencies are 15.92 and 14.66 MHz at room temperature.

We are grateful to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for support of this work and Dr H. Paulus for collecting the X-ray data.

References

- BORCHERS, D. & WEISS, A. (1987). Z. Naturforsch. Teil A, 42, 739-748.
- GEARHART, R. C., BRILL, T. B., WELSH, W. A. & WOOD, R. H. (1973). J. Chem. Soc. Dalton Trans. pp. 359–361.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- NIELSEN, K. & BERG, R. W. (1980). Acta Chem. Scand. Ser. A, 34, 153–154.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHUSTEROVITCH, E. M., PORAI-KOSHITS, M. A. & BUSLAEV, Y. A. (1975). Coord. Chem. Rev. 17, 1–98.
- STORCK, P. & WEISS, A. (1989). Ber. Bunsenges. Phys. Chem. 93, 454-466.

Acta Cryst. (1990). C46, 770-772

Structure of $Bis{N-[2-(2-pyridyl)ethyl]-3-ethoxysalicylideneaminato}copper(II)$

BY A. CASTIÑEIRAS, W. HILLER AND J. STRÄHLE

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Federal Republic of Germany

AND J. ROMERO, R. BASTIDA AND A. SOUSA

Departamento de Química Inorgánica, Universidad de Santiago de Compostela, Campus Universitario, E-15706 Santiago de Compostela, Spain

(Received 19 December 1988; accepted 15 August 1989)

Abstract. [Cu(C₁₆H₁₇N₂O₂)₂], $M_r = 602 \cdot 19$, monoclinic, $P2_1/n$, $a = 13 \cdot 246$ (5), $b = 7 \cdot 155$ (3), $c = 15 \cdot 123$ (4) Å, $\beta = 92 \cdot 25$ (4)°, $V = 1432 \cdot 2$ Å³, Z = 2, $D_x = 1 \cdot 397$ g cm⁻³, λ (Cu $K\alpha$) = 1 \cdot 54184 Å, $\mu =$ 13.950 cm⁻¹, F(000) = 630, T = 293 K. The final R value is 0.045 for 1896 significant $[I > 3\sigma(I)]$ reflections. In the centrosymmetric compound the Cu atom is bonded to an imine N atom and a phenolate

0108-2701/90/050770-03\$03.00 © 19

© 1990 International Union of Crystallography

parameters

Table 1. Data-collection and structure-refinement Table 2. Positional and equivalent isotropic thermal parameters $U_{eq}(Å^2)$

Crystal shape, dimensions	Prismatic, $0.10 \times 0.10 \times 0.35$ mm	$U_{\rm so}$ is defined as one third of the trace of the orthogonalized						
Difractometer used	CAD-4, Enraf-Nonius	U_{ii} tensor.						
Method of intensity measurement	$\theta - 2\theta$			9				
No. and θ range of reflections for	25; 17–30°		x	У	Z	U_{eq}		
lattice parameters		Cu	0.000	0.000	0.000	0·0344 (3		
Method used for absorption correction	DIFABS (Walker & Stuart, 1983)	O(1)	0.0943 (2)	0.1110 (4) -0.0732 (2)	0·0453 (1		
Minimum absorption correction	0.732	O(2)	0.2411 (2)	0.3083 (4) -0.1301 (2)	0.0500 (2		
Maximum absorption correction	1.514	N(1)	-0.0892 (2)	-0.0604 (4) - 0.1056 (2)	0.0340 (1		
Average absorption correction	0.987	N(2)	-0.2557 (2)	- 0.5946 (5) -0.1443 (2)	0.0467 (2		
Maximum value of $(\sin \theta)/\lambda$ reached	0-588 Å ⁻¹	C(1)	-0.3209 (3)	-0.7326 (6) -0.1298 (3)	0.0537 (2		
in intensity measurement		C(2)	-0.3210 (3)	-0.8361 (6) -0.0535 (3)	0.0527 (2		
Range h. k. l	$0 \rightarrow 15, -8 \rightarrow 8, -17 \rightarrow 17$	C(3)	-0.2505 (3)	-0.7970 (6) 0.0115 (3)	0.0520 (2		
Standard reflections	323: 406: 440	C(4)	-0·1818 (3)	0.6542 (6) -0.0017 (3)	0.0450 (2		
Interval standard reflections measured	2 h, no intensity variation	C(5)	-0.1870 (3)	-0·5553 (5) -0.0805 (3)	0.0377 (2		
Total No. of reflections measured:	5409: 65°	C(6)	-0.1149 (3)	-0.3995 (6) -0.0983 (3)	0.0460 (2		
θ range	(940 systematic absences included)	C(7)	-0.1662 (3)	-0.2087 (6) -0.1004 (3)	0.0383 (2		
No. of unique reflections; R_{int}	2462; 0.029	C(8)	-0.0888 (3)	0.0377 (5) - 0.1775 (2)	0.0363 (2		
No. of observed reflections	1896	C(9)	-0.0138 (3)	0.1718 (5) -0.2002 (2)	0.0353 (2		
Criterion for observed reflections	$I > 3\sigma(I)$	C(10)	-0.0271 (3)	0.2744 (6) -0.2802 (3)	0.0503 (2		
Methods used to solve structure	Patterson and subsequent	C(11)	0.0462 (4)	0.3907 (7) - 0.3077 (3)	0.0587 (3		
	difference Fourier map	C(12)	0.1369 (3)	0.4087 (6) - 0.2593 (3)	0.0517 (2		
Use of F or F^2 in LS refinement	F	C(13)	0.1523 (3)	0.3098 (6) -0.1830 (2)	0.0403 (2		
Method of locating H atoms	ΔF map	C(14)	0.0756 (3)	0.1935 (5) - 0.1488 (2)	0.0337 (2		
Method of refining H atoms	Positional parameters with fixed	C(21)	0.3252 (3)	0.4168 (7) -0.1570 (3)	0.0590 (2		
	isotropic temperature factors	C(22)	0.4003 (4)	0.3939 (8) -0.0888 (4)	0.0900 (4		
Weighting scheme	$1/\sigma^2$							
Parameters refined	239							
Value of R	0.045	Table 2 Selected band distances (λ) and analog (9)						
Value of wR	0.049	Iau	ie 5. Select	eu oonu uis	iunces (A) unu	ungles ()		
Ratio of max. LS shift to e.s.d. (Δ/σ)	0.05	~ ~	1)	1 070 (3)	N(1) ((7)	1 475 (5)		
Max, height in final ΔF map	0-445 e Å ⁻³	Cu0(1)	1.878 (2)	N(I) = C(I)	1.4/3 (3)		
Error in an observation of unit weight	1-363			1.996 (3)	N(1) - C(8)	1.294 (5)		
Secondary-extinction coefficient	$2.8516(1) \times 10^{-6}$	0(1) - 0(1) -	2(14)	1.303 (4)	N(2) = C(1)	1.330 (3)		
	(Zachariasen, 1963)	0(2) - (2)	$\mathcal{L}(13)$	1.396 (5)	N(2) - C(5)	1.330 (5)		
Source of atomic scattering factors	International Tables for X-ray	0(2)(2(21)	1.431 (5)				
	Crystallography (1974)	<u> </u>		100 1 (()	C N(1) C(0)	100.0 (2)		
Computer used	DEC MicroVAXII	0(1) - 0	u = O(1)	180.1 (6)	$C_{1} = N(1) = C(14)$	122.2 (3)		
Programs used	VAX/SDP (B. A. Frenz &	$O(1) \rightarrow O(1)$	u = N(1)	90.4 (1)	$C_{1} = O(1) = C(14)$	120.9 (2)		
	Associates Inc., 1985);	$O(1) \rightarrow O(1)$	u = N(1)	89.0(1)	(14)	121.4 (3)		
	SHELXS86 (Sheldrick, 1986)	N(I)—(_u—N(1')	180.1 (4)	U(1) - U(14) - U(9)	124.5 (3)		

O atom of two symmetry-related Schiff bases in a square-planar geometry. The pyridyl N atom is not coordinated to the metal atom.

Introduction. In a previous paper (Atherton, Fenton, Hewson, McLean, Bastida, Romero, Sousa & Castellano, 1988), the multidentate ligand (I) has been studied. In the case of the 4,6-dimethoxy derivative, X-ray diffraction data have shown that the copper(II) complex exhibits a square-planar coordination with the metal coordinated to the phenolate O and imine N atoms. However when R is 3-ethoxy, electronic spectra and EPR data suggested that the copper(II) complex has a different structure. For this reason it was considered worthwhile to determine the structure of this complex using X-ray diffraction techniques.

Symmetry operator: (i) $-x_1 - y_2 - z_2$.

Experimental. The complex was prepared by an electrochemical procedure similar to that described in the literature (Habeeb, Tuck & Walters, 1978). The parameters for intensity-data collection, structure solution and refinement are listed in Table 1. The final atomic coordinates are given in Table 2, selected bond distances and angles in Table 3.* Figs. 1 and 2 show the numbering scheme and a stereoview, respectively.

Discussion. The Cu^{II} atom is located on a crystallographic symmetry center and is coordinated to the phenolate O and imine N atoms of two symmetryrelated ligands. The coordination polyhedron is square-planar within experimental accuracy with Cu-O(1) and Cu-N(1) distances of 1.878 (2) and

^{*} Lists of structure factors, anisotropic thermal parameters, bond distances and angles, torsion angles and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52502 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Plot of the molecule showing the numbering scheme.

1.996 (3) Å, respectively. These bond distances are similar to those found in related salicylaldiminato complexes (Lingafelter & Braun, 1966) and also found in bis{N-[2-(2-pyridyl)ethyl]-4,6-dimethoxysalicylideneaminato}copper(II) (Atherton, Fenton, Hewson, McLean, Bastida, Romero, Sousa & Castellano, 1988). In the Schiff base, the N(1)—C(8) bond length of 1.294 (5) Å is in agreement with the value of 1.30 Å proposed for a C—N double bond (Brown, Towns & Trefonas, 1970). The pyridyl N atom is not coordinated to the metal. The bond lengths and angles in this ring are close to the expected values for a heteroaromatic ring.

Fig. 2. Stereoscopic view.

We thank the DAAD and MEC (Spain) for financial support.

References

- ATHERTON, N. M., FENTON, D. E., HEWSON, G. J., MCLEAN, C. H., BASTIDA, R., ROMERO, J., SOUSA, A. & CASTELLANO, E. E. (1988). J. Chem. Soc. Dalton Trans. pp. 1059–1062.
- B. A. FRENZ & ASSOCIATES INC. (1985). Structure Determination Package; SDP/VAX V. 2.2. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- BROWN, J. N., TOWNS, R. L. & TREFONAS, L. M. (1970). J. Am. Chem. Soc. 92, 7436-7440.
- HABEEB, J. J., TUCK, D. G. & WALTERS, F. H. (1978). J. Coord. Chem. 8, 27-33.
- International Tables for X-ray Crystallography (1974). Vol. IV. Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- LINGAFELTER, E. C. & BRAUN, R. L. (1966). J. Am. Chem. Soc. 88, 2951–2956.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
- Walker, N. & STUART, D. (1983). Acta Cryst. A39, 158-166. Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1990). C46, 772-774

Bis(*N*-isopropyl-5-bromosalicylaldiminato)nickel(II)

BY VICTOR MANRIQUEZ, J. VARGAS* AND J. COSTAMAGNA

Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

AND H. G. VON SCHNERING AND K. PETERS

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-7000 Stuttgart 80, Federal Republic of Germany

(Received 10 May 1989; accepted 9 August 1989)

6.075 (4) Å,

110·21 (5)°,

Abstract. Bis[4-bromo-2-(isopropyliminomethyl)phenolato]nickel(II), $[Ni(C_{10}H_{11}BrNO)_2]$, $M_r = 540.90$, triclinic, $P\bar{1}$, a = 8.789 (6), b = 10.203 (7), c =

* Present address: Universidad Metropolitana de Ciencias de la Educacion, Santiago, Chile.

0108-2701/90/050772-03\$03.00

1.818 Mg m⁻³, λ (Mo K α) = 0.71069 Å, μ (Mo K α) = 5.01 mm⁻¹, F(000) = 272, T = 293 K, R = 0.055 for 1189 unique observed reflections [F > 3 σ (F)]. The Ni atom at the symmetry centre is *trans*-planar coor-

 $\alpha = 103.92 (5), \quad \beta = 80.23 (5),$ $V = 493.9 (6) Å^3, \quad Z = 1,$

 $D_{-} =$

© 1990 International Union of Crystallography